
Ra*=GrPr ~'g Fa, 

F. L / 15"a8(~176 4<13~<60, 
t l5 .a8  O . 0 8 -  f~.O.OOO421)/AT, 6O < 13 < 2OO. ' 

(18) 

In conclusion we note that the observed appearance of natural convection in bubbles in 
foam accompanying weak heating could be of interest for accelerating interphase mass transfer 
in this system and deserves more detailed study. 

NOTATION 

le, effective thermal conductivity of foam; Ig, the thermal conductivity of air; %l' 
thermal conductivity of water; D, diameter of a foam cell; loe, thermal conductivity of foam 
as D § O; ~=~edl0e, correction factor; Ra = GrPrlg/%l, Rayleigh's number; Gr = gD~StAT/~ 2, 
Grashoff's number; Pr = pgCp~/Ig, Prandtl's number; ~, kinematic viscosity; St, thermal co- 
efficient of expansion of-air; ~t, temperature drop over one cell; g, acceleration of grav- 
ity; q, heat flux; 8, foam ratio; c, porosity; a, thermal diffusivity of the foam; T, temper- 
ature; p, density of the foam; ~, and %~ correction factors; A, coefficient; and Cp, heat 
capacity of air at constant pressure. 
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METHOD FOR COMPREHENSIVE DETERMINATION OF THERMOPHYSICAL CHARACTERISTICS 

AND AN ALGORITHMFOR COMPUTER ANALYSIS OF THE EXPERIMENTAL DATA 

N. I. Gamayunov, R. A. Ispiryan, 
A. L. Kalabin, and A. A. Sheinman 

UDC 536.2.021:022 

The sequence of computer analysis of experimental data in comprehensive determina- 
tion of the coefficients of thermal conductivity and thermal diffusivity in the La- 
place transform domain is presented. 

The difficulty of implementing most existing methods for experimental determination of 
the thermophysical characteristics (TPC) of materials [i] is linked with the complexity of 
the thermal processes occurring in the system consisting of the measuring cell and the sample 
of material tested as well as with the need for simple analytic expressions for calculating 
the coefficients from the experlmental data. For this reason, a series of devices for estab- 
lishing special conditions for heating the sample (maintaining constant or varying according 
to a definite law the temperatures and heat fluxes on the surfaces of the sample, one-dimen- 
sionality of the temperature field in the sample, etc.) are inserted into the experimental ap- 
paratus. An example of such methods are the methods of monotonic heating, developed and suc- 
cessfully implemented in [2]. The advantages of this apparatus include a wide temperature 
range, highly accurate determination of the TPC, and the possibility of evaluating the error 
in the results. However, the difficulty of setting up and calibrating the apparatus, owing 
to the fact that a large number of factors must be taken into account, requires that :the 
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Fig. 1. Thermal scheme employed for  measuring 
the thermal conductivity and thermal diffusivity. 

aj 

Fig. 2. Qualitative dependence of the coefficient a on the 
parameter s; the solid curve shows the reconstructed value 
of the coefficient a; the broken line is the true value of 
the coefficient a. 

personnel using the equipment be highly qualified, and for this reason the equipment can be 
employed only in scientific and special studies. 

The difficulties associated with the creation of special conditions for heating the sam- 
ple can be avoided by employing the characteristics of more complicated heat transfer proc- 
esses in determining the TPC. The methods based on the integral Laplace transformation (ILT) 
provide such a possibility. Thus a series of methods in which a monotonic, but arbitrarily 
varying temperature (or heat flux) is created on the surface of a sample was proposed in [3]. 
Under these conditions an ILT is employed and expressions are found in the transform domain 
for calculating the coefficients. The transforms of the experimental quantities (tempera- 
tures, heat fluxes), appearing in the working formulas, are calculated by integrating the ex- 
perimental data. Other methods based on the ILT are also available [4, 5]. Aside from the 
advantages mentioned above, these methods also permit determining the confidence interval for 
the values of the coefficients sought. 

Since the transforms cannot be calculated exactly because the measurements contain er- 
rors and the measurement time is finite, the practical implementation of the methods for de- 
termining the TPC in the transform domain requires analysis of the suitability of the mathe- 
matical model for describing the process, studies of the conditions required for a correct so- 
lution, finding the transform parameter that gives the minimum error in calculating trans- 
forms, and evaluation of the confidence interval for the TPC obtained. 

We shall examine one method for comprehensive determination of the thermophysical char- 
acteristics. Let a system consisting of three infinite plates (Fig. i) be heated symmetric- 
ally in a medium with a temperature higher than their starting temperature. The plate in the 
middle is the sample being tested, and the plates on either side consist of a material with 
known properties and are the reference plates. 

The heat-transfer process is described by the system of equations with the boundary and 
initial conditions: 
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- = a - -  x E  0,  x > O ,  
c)'c, Ox z ' ' 

OTe O2Te [ R R e] 
a ~  - -ae  . xC - -  - - , + R  

Ox ~ _ 2 ' 2 

T(x, 0) = T e (x, 0), 

OT t, =0,  
OX x=o 

OT [ = s OTe. 
Ox I~=a_ e Ox x=R_ 

2 2 

, " ~ > 0 ,  

(z) 

9 9, 

Assume that the temperatures at points with the coordinates x -- 0 and x = R/2 are known 

) y T(0, ~)=T0(~), T (  m =TI(T), 

and then ,  app ly ing  the  ILT to the  system (1) and t ak ing  i n t o  account  the  c o n d i t i o n  (2 ) ,  we 
ob t a in  the  working formulas  f o r  de t e rmin ing  the  c o e f f i c i e n t s  a and X: 

(2) 

P~ (3) 
a =  [ h ( p )  ] ' 

4 Arch 2 [ to (P) J 

~=~e fl(P) r,,<,,, chVl '~eUe �9 (4) 
f i  (p)-- f i  (p)sh ~ R 

a e r 

As already pointed out the exact transforms of the time dependences of the temperatures 
cannot be found from the experimental data. For this reason the coefficients a and X will be 
functions of the parameter s = Pmma x and a special analysis must be performed. First, the 
adequacy of the description of the real process by the mathematical model must be evaluated. 
A discrepancy can be caused by the following factors: the temperature dependence of coeffi- 
cients, nonuniformity of the temperature field, asymmetry of the heating, the existence of 
contact thermal resistances, etc. As computer calculations showed, if the mathematical model 
corresponds to the real process, then the dependence of the coefficients a and X on the pa- 
rameter s is qualitatively of the same character as that shown in Fig. 2, i.e., the function 
has a horizontal section. 

The condition for the existence of a solution follows from the structure of the formulas 
(3) and (4). The inequalities 

f, (P) > f o  (P). f, (P) i> f~ (p). ~ > oh 1; 

the rate of heat- must hold. The conditions enumerated hold if the heating is monotonic, i.e., 
ing during the experiment must be positive. 

The transform parameter p must be chosen based on the method for calculating transforms. 
There are two such methods: numerical integration and approximation of the experimental time 
dependences of the temperatures by some function. In the second method the function found is 
then transformed into the transform domain. In calculating the transforms by numerical inte- 
gration quadratures of a higher algebraic degree of accuracy were employed in [3], this leads 
to the choice of orthogonal Chebyshev--Laguerre polynomials as the weighting functions. The 
times at which the measurements are performed are strictly fixed and are determined hy the 
values of the corresponding roots of the Chebyshev-Laguerre polynomials. This leads, first, 
to the fact that the continuousdependence of the coefficients sought on the Laplace trans- 
form parameter cannot be analyzed and, second, to the fact that the "optimal" value of the 
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Fig. 3. Generalized algorithm for analyzing the experimental data: 
I) approximation of the experimental data with spline functions and 
evaluation of the average residual variance using the formula (7); 
II) calculation of a and ~ based on the formulas (3) and (4) and ap- 
proximation of the dependences a = a(s), % = %(s); III) finding the 
optimal value of the parameters s a and s% from the conditions (6); 
IV) calculation of the optimal values of a and ~ from the formulas 
(3) and (4); V) the condition M > i; Vl) the condition (i0); VII) 
calculation of the confidence intervals for the coefficients a and % 
sought; VIII) superposition of the random noise with the variance 
(7) on the temperature data; IX) stop. 

parameter must be given a priori based on the error of the quadrature formula. The drawbacks 
described above can be eliminated by approximating the time dependences of the temperatures 
and then transforming them into the transform domain. It is best to choose cubic splines for 
the approximating functions. This made it possible to solve two problems: choosing the best, 
in the sense of minimum relative methodical error, values of the parameters s and s~ and es- 
timation of the confidence interval. Numerical analysis showed that the modulus of the de- 
rivative of the coefficient sought with respect to s is best used for selecting s a and s%: 

' W I  (5) 

The optimal values of the parameters s a and s~ correspond to the conditions 

Ia-+min, l~ --'min, (6) 
, $  S 

which is equivalent to vanishing of the second derivatives of the coefficients with respect 
to s. As experiments and numerical analysis showed, the methodical error of the approxima- 
tion can be made negligibly small by varying the rate of heating, the duration of the experi- 
ment, and the time step of the measurements so as to achieve a horizontal section with an ex- 
tent As = 3-4 (Fig. 2). 

One of the chief problems in determining the TPC is to establish a relation between the 
error in the experimental measurement of the temperatures and the confidence interval contain- 
ing the valuesof the coefficients sought. The average residual variance of the approximation 
of the experimental data with spline functions was adopted as the estimate of the random er- 
ror in the temperature measurement: 

-2 1 ~ ~ (Tij-- T~)2' (7) 
a c - -  3 ( n - - k - - 1 )  i=oi= I 
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where n is the number of measurements, k is the number of nodes in the spline, Tij and Tij 
are, respectively, the experimental and approximating temperatures at the i-th point, j = 0, 
i, 2. 

The confidence interval was evaluated by statistical modeling using the method described 
in [5]. In so doing the random noise with the variance (7) is superposed on the spline func- 
tions approximating the experimentally determined temperatures. The mathematical expectation 
of the noise includes the errors owing to the uncertainty of the connection of the thermocou- 
ples, the asymmetry of the heating and of the system as a whole, and the existence of contact 
resistances. The coefficients are calculated next. Their variance at each step of the model- 
ing is evaluated using a recurrence formula, which, in particular, has the following form for 
the thermal diffusivity: 

"2 "2 1 
= - -  - ~  o ~ , ( M - ~ ) l ,  ( 8 )  OQ,M ~a,(M--l) Jr- M - -  1 [(aM--aM)2 -2 

where ~ M is an estimate of the variance of the coefficient a at the step M; a M is the value 
of the coefflcient calculated at the step M; M = i, 2, 3, ..., 

aM = aM-~ + -~- ( a M - - a M - , ) "  (9) 

It is obvious that at = at and ~ = 0. Formulas analogous to (8) and (9) are employed to 
evaluate the variance of the coefficient X. 

The modeling is terminated when the condition 

, I A o ~ , M I  <e, (i0) 
O~,M 

where IA;  MI=] ' '  ""  = - - cl,(M-l) l and e is a fixed small number 
(for example, holds. IA;I,MI I;I,M - "  

From the samples of c and X obtained the following intervals are calculated [5]: 

a=a___3~, (n) 
=7 +__ 3~ (12) 

with a confidence probability of not less than 90%. 

A generalized algorithm for analyzing the experimental data with an evaluation of the 
confidence interval is given in Fig. 3. 

An automated experimental apparatus was developed for practical implementation of the 
proposed method. Polymethyl methacrylate, whose thermophysical properties are well known and 
remain virtually constant as a function of the temperature, was chosen as the reference in 
the measuring cell [2]. The temperature was measured with copper-constantan thermocouples 
with a diameter of i'i0 -~ m; the thermo-emf was measured with a Shch68003 digital voltmeter. 
The temperature drop across the reference and across the sample did not exceed 5 K in the 
experiments. 

A package of programs was developed to analyze the experimental information presented in 
the form of a data file. The packet was realized based on l~TK SM-4 in OS RAFOS-2. 

In conclusion we shall present some data obtained on the apparatus developed: asbestos 
a = (0.361 • 0.017)'10 -~ ma/sec, X = (0.140 • 0.012) W/(m.K); ebonite a = (0.105 • 0.004) x 
i0 -~ ma/sec, X = (0.152 • 0.013)W/(m-K); organic glass a = (0.113 • 0.006)'10 -6 ma/sec, X = 
(0.184 • 0.014) W/(m-K). 

For insulation materials the relative error does not exceed 6% for the thermal diffusiv- 
ity and 11% for the thermal conductivity. 

NOTATION 

X and a, thermal conductivity and thermal diffusivity of the plate material; T(x, x), 
temperature at a point with the coordinate x at time T; R, thickness of the plate, p, Laplace 
transform parameter; fo(P), f,(P), fa(P), transforms of the temperature To(T), T,(T), T=(T); 
rmax, maximum time of the experiment. The index e refers to the standard. 
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STRUCTURAL EFFECT OF THE TEMPERATURE COEFFICIENT OF RESISTIVITY 

OF ELECTRICALLY CONDUCTING HETEROGENEOUS SYSTEMS 

G. V. Kozlov UDC 621.316.825:541.6:678.046 

The temperature dependence of the electrical resistivity of heterogeneous filled 
systems on the thermomechanical properties of their components and the filler par- 
ticle dimensions and the contact spots between them is derived and confirmed ex- 
perimentally. 

Heterogeneous electrically conducting systems that are a dielectric matrix filled with 
conducting particles are applied extensively in practice, consequently, their development and 
the investigation of their properties has received a great deal of attention [1-4]. For in- 
stance, lacquer-carbon black thick-film resistors, polymer current-conducting glues, and com- 
posites are utilized extensively in electrons and the radio industry. One of the most im- 
portant characteristics of such systems is the temperature coefficient of the resistivity 
determined from the formula 

1 dR 
- -- (1) 

R dt 

An attempt at a mathematical description of the dependence of a on the mechanical-temper- 
ature constants of the conducting filler and binder is made in [5, 6] in an exampleof ceramic 
resistive composites : 

1 2 
0~ 

T(1 -l-mT) -T-  ' (2) 

where m is the coefficient characterizing the linear thermal expansion of a spherical filler 
particle in an elastic matrix and is a function of ~, 8, E of the matrix and the filler. 

It is assumed in the derivation of (2) that the centers of the particles in the conduct- 
ing chains remain fixed as the temperature increases while a is determined by the change in 
resistivity of the hypothetical contact film between the particles. However, verification 
shows that the dependence (2) is inaccurate and does not reflect fully the processes proceed- 
ing in the contacts as the temperature changes. Indeed, if it is assumed that equality of the 
coefficient m to zero is achieved by selecting the heterogeneous system components by means 
of their mechanical-temperature constants, then evidently ~ should equal zero. According to 
(2), for m = 0 ~ =-I/T. 

In contrast to [5, 6], we examined a heterogeneous system model whose conducting parti- 
cles make direct contact. According to [7], the particle resistivity in this case will be 
due mainly to contraction of the current lines of force at the contact spots whose area is 
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